
Exact local Green function for phonons in a Fibonacci chain: a new real-space renormalisation

group approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 1017

(http://iopscience.iop.org/0953-8984/1/5/020)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 10/05/2010 at 17:40

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/5
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter l(1989) 1017-1023. Printed in the UK 

LETTER TO THE EDITOR 

Exact local Green function for phonons in a Fibonacci 
chain: a new real-space renormalisation group 
approach 

Arunava Chakrabarti, S N Karmakar and R K Moitra 
Saha Institute of Nuclear Physics, 92 Acharya Prafulla Chandra Road, Calcutta 700 009, 
India 

Received 10 October 1988 

Abstract. An exact real-space renormalisation group (RSRG) approach for the local Green 
function (LGF) for a quasi-periodic Fibonacci chain has been developed. The method has 
been used to study the local density of states (LDOS) for phonons, both in the on-site and 
transfer models. The scale factor in this work is t3, t being the golden ratio. Apart from 
mapping a Fibonacci chain onto itself, our transformation accounts for the additional 
constraining symmetry, namely, that the local environment around the site at which the LGF 
is being found should remain invariant. The Cantor set-like behaviour of the energy spectrum 
results naturally from our alternative formulation. 

Recent years have witnessed considerable activity, both theoretical and experimental, 
leading to the understanding of the structure and stability of quasi-crystals, first observed 
through the experimentsof Schechtman and co-workers [ 11. The idea of two-dimensional 
aperiodic tiling of a plane, first introduced by Penrose [ 2 ] ,  provides an excellent con- 
ceptual tool for understanding the structure of actual three-dimensional quasi-crystals. 
Such systems are neither periodic in the sense of a perfect crystal, nor are they completely 
random, but in them the long-range bond-orientational order appears in perfect harmony 
with the observed icosahedral symmetry. This completely new topology results in exotic 
electronic structures, namely, the Cantor set energy spectrum, self-similar 
wavefunctions etc [3]. These properties are shared by quasi-crystals in any spatial 
dimension, and in particular by the one-dimensional version of quasi-periodic systems, 
which has received much attention during the last few years [4, 51. Apart from the 
intrinsic interest in such one-dimensional systems because of their possible amenability 
to analytic study, there is the added interest that such systems have recently been 
prepared by appropriate stacking of thin semiconducting films [6]. Such samples are 
therefore likely to provide testing grounds in future for experimental verification of the 
various aspects of quasi-periodicity that are currently being studied theoretically. 

A well studied model of a one-dimensional system is the Fibonacci chain, on which 
considerable work has been done so far through the efforts of Ostlund and co-workers, 
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Kohmoto and co-workers and many others also (see [4,5]). Both analytical and numeri- 
cal methods have been employed to find out the multi-fractal nature of the wavefunctions 
and the scaling of the energy spectrum, though the number of exact results obtained are 
relatively few so far. Among the analytical techniques the most important one is the 
real-space renormalisation group (RSRG) scheme, first introduced by Kohmoto, Kadanof 
and Tang (KKT) [4]; it has been used by several authors [5]  for studying the nature of the 
eigenfunctions in such systems. The KKT scheme mainly exploits an exact recursion 
relation between transfer matrices whose traces exhibit a non-linear dynamical mapping 
for a one-dimensional model described by a difference equation version of the Sch- 
rodinger equation. On the other hand, much less attention has been given so far to the 
study of local properties in one-dimensional quasi-periodic lattices [7-91. In a Fibonacci 
chain every site is different from every other as far as the local topology is concerned 
and hence it is of extreme importance to study the environmental-dependent quantities 
such as the local density of states (LDOS), which are likely to reveal important information 
regarding the structure of quasi-crystals in general. For this, it is necessary to determine 
the local Green functions (LGF) at any arbitrary site on the Fibonacci chain. Since every 
atom in a Fibonacci chain sits in a different environment, the LGF is different at every 
site. This implies that each site in the chain has associated with it its own hierarchy of 
equations for the LGF. This situation is intrinsically different from the case of the 
eigenfunctions, where we have a single set of equations for the whole system [4]. Thus 
it is not possible to employ the RSRG scheme of KKT for studying the LGF. 

Within the RSRG framework, a step in the right direction was recently taken by 
Ashraff and Stinchcombe [9], who discussed a decimation scheme for finding the LGF on 
a Fibonacci chain. This scheme maps the chain onto itself, thereby maintainings its 
global quasi-periodic character. However, it misses the most desired aspect of the RSRG 
transformation in this case, namely, that the Fibonacci chain must also be locally 
invariant around the site at which the LGF is to be found, the site itself remaining 
undecimated during the transformation. In fact, it can easily be checked that the hier- 
archy of equations for the Green functions for any chosen site does not remain invariant 
under the decimation transformation proposed by Ashraff and Stinchcombe (AS). Fur- 
thermore, this scheme identifies only three types of site in the chain, a ,  /3 and y ,  
depending on the possible nearest neighbours of the site, whereas it is well known that 
every site in any quasi-periodic system sits in a different environment if one looks beyond 
the nearest neighbours. Thus the asites, for instance, are not equivalent to one another, 
and thus they do not share the same LGF. This is also true for the p and y sites. 

In this Letter we report a novel RSRG scheme for obtaining exactly the LGF at any 
arbitrary site of an infinite Fibonacci chain. Our method is free from all the shortcomings 
of the AS work, and in particular it takes adequate account of the local invariance 
requirements mentioned above. Using our approach we have determined the LDOS for 
phonons in a Fibonacci chain. For this, we develop a variant of the real-space decimation 
scheme used first by Southern and co-workers [lo] and da Silva and Koiller [ l l ] .  As in 
the work of AS, the formulation of the present approach requires the consideration of 
three different types of mass, as well as two different coupling constants. Our method 
therefore automatically includes both the on-site and the transfer models as special 
cases, apart from being applicable to the more general and realistic situation when a 
combined model has to be considered. 

Let us consider a linear chain of atoms in which long (L) and short (S) bonds are 
arrayed in the Fibonacci sequence. We suppose that the mass of the atom at an L-L 
vertex is ml ,  that at an L-S vertex is m2 and that at an S-L vertex is m3. Since S-S bonds 
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respectively be the spring constants corresponding to a long and short bond 
equations for the Green functions have the form 

where mi is the mass of the ith atom and 

w, = d 2 V / d U i  dui 

V =  i E kj,i+l(Uj - U j + 1 l 2  

and 

in the harmonic approximation. The LDOS at thejth site is given by 

p , ( o )  = (l/n) Im Gjj (w2 + io+).  

Considering figure 1, the set of equations (1) may be explicitly written out as 

(kL + ks - m2w2)Goo = 1 + ksGlo + kLG-10 

(k ,  + kL - m3w2)Glo = ksGoo + kLGZO 

(2kL - m,w2)G20 = kLGlo + kLG30 

and so on for both the right and left sides of the central site (i.e. the zeroth site) 
which is chosen to have mass m2 in this case. The implementation of a decimation- 
renormalisation scheme demands that we remove a suitable set of sites from the above 
equations, such that the central site is left undecimated and the original environment of 
the central atom is kept invariant, with renormalised atomic masses and coupling 
strengths of course. This requirement is quite different from that in the case of the 
determination of the dispersion spectrum of a Fibonacci chain, where the chain has to 
be kept globally invariant under a RG transformation. In contrast, in the present case we 
have the additional constraint of keeping the local environment also invariant with 
respect to the chosen central site. Thus we need an altogether different RG scheme. 

First of all, let us define the elementary RG transformations of the bonds L + S + L', 
L +  S' and S + L +  L', L +  S',  which we call transformations of type I and I1 
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respectively. These are not equivalent transformations because of the intrinsic hand- 
edness of a Fibonacci chain. Transformation I is, in fact, identical to that used by AS. A 
very detailed and exchaustive examination of Fibonacci chains of various orders reveals 
the following striking factors. Firstly, in every generation it is possible to identify a 
special site, which we call a ‘key site’, whose environment remains invariant under a 
suitable three-step combination of transformations I and I1 listed above, while the site 
itself remains undecimated. This means that we are able to map a Fibonacci chain onto 
a segment of itself around the key site, which immediately leads to the desired RG 
scheme. In figure 1 we show a part of the original chain and the sub-chains that result 
after each step of decimation for the case under consideration. We have been able to 
detect three types of key site and have classified Fibonacci chains of different generations 
into three distinct classes, each class being characterised by a single key site which is a 
unique choice for that class. A notable feature of such classification is that the three 
classes described above exhibit the following closure property. The first application of 
an elementary transformation I or I1 maps one particular class onto the class of the 
previous generation. The second application of the decimation scheme maps this ‘new’ 
chain onto the chain belonging to the remaining class and the final step (I or 11) brings 
back the configuration of the particular class with which we started originally. The 
decimation operations follow a well defined sequence for every class. 

Now as far as the other sites are concerned, we find that they can always be mapped 
onto a segment around the key site using similar combinations of the elementary decim- 
ation steps I and 11, the number of these steps being governed by the position of a site 
with respect to the key site in any particular generation. If, in a Fibonacci chain of any 
generation, we select a segment around the key site which represents a chain of the 
lowest order belonging to that particular class, then the configuration around any off- 
centre site in that segment can be transformed into the configuration around the key site 
of that class by a suitable three-step decimation. The chosen off-centre site now becomes 
the key site with renormalised mass and coupling constants. For a longer segment 
representing the next-highest-order generation around the same key site, the additional 
sites, which appear beyond the boundary of the lowest-order chain, can be transformed 
into the key site by a six-step decimation and so on. Once this is achieved, the RG 
procedure for those other sites may proceed in the same manner as in the case of the key 
site. We have checked these contentions using chains containing up to 46 368 bonds, and 
found them to be exactly true in every case. This gives us sufficient confidence that the 
RG scheme outlined above is universally true for Fibonacci chains of any length. 

We give below the exact recursion relations obtained from the Green function 
equations ( 5 )  for the three masses and the spring constants obtained for a key site of 
mass m2: 
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Figure 2. The LDOS at the key site with mass m2 in the on-site model. m, = m3 = 1, m2 = 2 
and kL/ks = 1. 

where 

= mlw2 - 2kL 

= m2w2 - (kL + k,) 

= m302  - (k ,  + kL).  

A closer look at the recursion relations shows that we have a stable fixed point at 
kL = ks = 0, so after infinite iterations we are left with a single pseudo-atom effectively 
decoupled from the rest. The local Green function at the specified site is then given by 

G m  = l / ( - & ; )  

and hence the LDOS can easily be obtained. In figures 2 and 3 we give the LDOS for the 
on-site and transfer model respectively, and in figure 4 we present the results of the 
combined model. All the LDOS plots show the expected fragmented structures charac- 
teristic of such a chain. Since we know the entire spectrum, the positions of the band 
gaps can be exactly determined. Our results confirm the positions of the gaps obtained 
numerically by Odagaki and co-workers [3]. 

We have also examined the behaviour of the spring constants kL and ks under 
successive iterations of the recursion relations. In a periodic system the eigenfunctions 
are extended and the spring constants under renormalisation behave differently outside 
and inside the energy bands. For example, for energy values lying outside the band, that 



1022 Letter to the Editor 

2 

LDOS 

1 

E 

I 

c 

Figure 3. The LDOS at the key site with mass m2 in the transfer model. ml = m2 = m3 = 1 and 
kL/ks = 0.75. 
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Figure 4. The LDOS at the key site with mass m2 in the combined model. m,  = m3 = 1,  m2 = 
2 and kL/ks = 0.75. 
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is within a gap, the k iterate to zero whether or not the energy contains an imaginary 
part [lo]. But inside the band the k display oscillations for real values of the energy and 
flow to zero on adding even a very small imaginary part to the energy. In the case of a 
quasi-periodic chain we observe that the spring constants always go to zero under 
iteration for every energy whether or not the chosen energy contains an imaginary part. 
This again confirms the fact that all the energy levels of a quasi-periodic chain are isolated 
and the energy spectrum is a Cantor set. 

In conclusion we would like to emphasise that we have described an exactdecimation- 
renormalisation scheme for obtaining the local properties of a Fibonacci chain. We have 
demonstrated our approach by finding the LGF for phonons in an infinite Fibonacci chain. 
Interestingly, the present RG scheme involves the length scale r3,  where z is the golden 
ratio. In view of the three-cycle nature of the RG transformation, it is tempting to 
speculate that the trifurcating nature of the spectrum is intimately related to this basic 
RG step. It is now possible to obtain the off-diagonal Green functions by this method, 
and to study the conductivity for the pure Fibonacci chain as well as for the cases where 
impurities are present. The electronic case can be dealt with in an entirely analogous 
manner. A detailed RG analysis, together with the study of all these problems, will be 
presented in future publications. 
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